Dead cores of singular Dirichlet boundary value problems with ϕ-Laplacian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive and dead core solutions of singular Dirichlet boundary value problems with phi-Laplacian

The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet boundary value problem (φ(u)) = λ[ f (t, u, u) + h(t, u, u)], u(0) = u(T ) = A. Here λ is the positive parameter, A > 0, f is singular at the value 0 of its first phase variable and h may be singular at the value 0 of its second phase variable. c © 2007 Elsevier L...

متن کامل

Solvability for some boundary value problems with φ-Laplacian operators

We study the existence of solution for the one-dimensional φ-laplacian equation (φ(u′))′ = λf(t, u, u′) with Dirichlet or mixed boundary conditions. Under general conditions, an explicit estimate λ0 is given such that the problem possesses a solution for any |λ| < λ0.

متن کامل

Singular Dirichlet Problem for Ordinary Differential Equations with Φ-laplacian

We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with φ-Laplacian (φ(u)) = f(t, u, u), u(0) = A, u(T ) = B, where φ is an increasing homeomorphism, φ( ) = , φ(0) = 0, f satisfies the Carathéodory conditions on each set [a, b] × 2 with [a, b] ⊂ (0, T ) and f is not integrable on [0, T ] for some fixed values of its phase variables. We prove the exis...

متن کامل

Heteroclinic Solutions of Singular Φ−Laplacian Boundary Value Problems on Infinite Time Scales

In this paper, we derive sufficient conditions for the existence of heteroclinic solutions to the singular Φ-Laplacian boundary value problem, [ Φ(y(t)) ]∆ = f(t, y(t), y(t)), t ∈ T y(−∞) = −1, y(+∞) = +1, on infinite time scales by using the Brouwer invariance domain theorem. As an application we demonstrate our result with an example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2008

ISSN: 0862-7940,1572-9109

DOI: 10.1007/s10492-008-0031-z